

The Nonlinear Schrödinger Equation on Metric Graphs

Colette De Coster¹, Simone Dovetta³, <u>Damien Galant</u>^{1, 2, 4}, Enrico Serra³, Christophe Troestler²

1. Université Polytechnique Hauts-de-France, INSA Hauts-de-France,

CERAMATHS - Laboratoire de Matériaux Céramiques et de Mathématiques, Valenciennes, France; {colette.decoster, damien.galant}@uphf.fr

- 2. Département de Mathématique, Université de Mons, Mons, Belgium; {damien.galant, christophe.troestler}@umons.ac.be
- 3. Dipartimento di Scienze Matematiche "G.L. Lagrange", Politecnico di Torino, Torino, Italy; {simone.dovetta, enrico.serra}@polito.it
 - 4. F.R.S.-FNRS Research Fellow

1. What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or going to infinity.

- metric graphs: the lengths of edges are important.
- the edges going to infinity are halflines and have infinite length.
- a metric graph is *compact* if and only if it has a finite number of edges of finite length.

Metric graphs may be used to model structures where *only one* spatial direction is important.

2. Functions defined on metric graphs

Here is an example of a metric graph \mathcal{G} with three edges e_0 (length 5), e_1 (length 4) and e_2 (length 3), a function $f:\mathcal{G}\to\mathbb{R}$, and the three associated real functions f_0 , f_1 and f_2 .

One may naturally perform operations over functions defined on metric graphs, such as integration:

$$\int_{\mathcal{C}} f \, \mathrm{d}x := \int_{0}^{5} f_0(x) \, \mathrm{d}x + \int_{0}^{4} f_1(x) \, \mathrm{d}x + \int_{0}^{3} f_2(x) \, \mathrm{d}x$$

3. The nonlinear Schrödinger equation on metric graphs

Given constants p>2 and $\lambda>0$, we are interested in solutions $u\in L^2(\mathcal{G})$ of the differential system

$$\begin{cases} u'' + |u|^{p-2}u = \lambda u & \text{on each edge } e \text{ of } \mathcal{G}, \\ u \text{ is continuous} & \text{for every vertex v of } \mathcal{G}, \\ \sum_{\mathbf{v} \in \mathcal{V}} \frac{\mathrm{d} u}{\mathrm{d} x_e}(\mathbf{v}) = 0 & \text{for every vertex v of } \mathcal{G}, \end{cases} \tag{NLS}$$

where the symbol $e \succ v$ means that the sum ranges over all edges of vertex v and where $\frac{\mathrm{d}u}{\mathrm{d}x_e}(v)$ is the outgoing derivative of u at v (*Kirchhoff's condition*).

Notation: We denote by $\mathcal{S}_{\lambda}(\mathcal{G})$ the set of nonzero solutions.

4. Variational formulation

We work on the Sobolev space

$$H^1(\mathcal{G}) := \Big\{ u : \mathcal{G} \to \mathbb{R} \mid u \text{ is continuous}, u, u' \in L^2(\mathcal{G}) \Big\}.$$

The solutions of (NLS) are the critical points of the *action func-tional*

$$J_{\lambda}(u) := \frac{1}{2} \|u'\|_{L^{2}(\mathcal{G})}^{2} + \frac{\lambda}{2} \|u\|_{L^{2}(\mathcal{G})}^{2} - \frac{1}{p} \|u\|_{L^{p}(\mathcal{G})}^{p}.$$

It is not bounded from below on $H^1(\mathcal{G})$, since if $u \neq 0$ then

$$J_{\lambda}(tu) = \frac{t^2}{2} \|u'\|_{L^2(\mathcal{G})}^2 + \frac{\lambda t^2}{2} \|u\|_{L^2(\mathcal{G})}^2 - \frac{t^p}{p} \|u\|_{L^p(\mathcal{G})}^p \xrightarrow[t \to \infty]{} -\infty.$$

A common strategy is to introduce the Nehari manifold $\mathcal{N}_{\lambda}(\mathcal{G}),$ defined by

$$\mathcal{N}_{\lambda}(\mathcal{G}) := \left\{ u \in H^{1}(\mathcal{G}) \setminus \{0\} \mid J'_{\lambda}(u)[u] = 0 \right\}$$

$$= \left\{ u \in H^{1}(\mathcal{G}) \setminus \{0\} \mid ||u'||_{L^{2}(\mathcal{G})}^{2} + \lambda ||u||_{L^{2}(\mathcal{G})}^{2} = ||u||_{L^{p}(\mathcal{G})}^{p} \right\}$$

If $u \in \mathcal{N}_{\lambda}(\mathcal{G})$, then

$$J_{\lambda}(u) = \left(\frac{1}{2} - \frac{1}{p}\right) \|u\|_{L^{p}(\mathcal{G})}^{p}.$$

In particular, J_{λ} is bounded from below on $\mathcal{N}_{\lambda}(\mathcal{G}).$

5. Two action levels for positive solutions

$$c_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{N}_{\lambda}(\mathcal{G})} J_{\lambda}(u); \qquad \sigma_{\lambda}(\mathcal{G}) := \inf_{u \in \mathcal{S}_{\lambda}(\mathcal{G})} J_{\lambda}(u).$$

 $c_{\lambda}(\mathcal{G})$ is the "ground state" action level. If this is a minimum, then $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and all minimizers are solutions, called *ground states* of the problem.

An analysis shows that four cases are possible:

A1) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and both infima are attained;

B1) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$, $\sigma_{\lambda}(\mathcal{G})$ is attained but not $c_{\lambda}(\mathcal{G})$;

A2) $c_{\lambda}(\mathcal{G}) = \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained;

B2) $c_{\lambda}(\mathcal{G}) < \sigma_{\lambda}(\mathcal{G})$ and neither infima is attained.

Theorem (De Coster, Dovetta, G., Serra (see [1]))

For every p > 2, every $\lambda > 0$, and every choice of alternative between A1, A2, B1, B2, there exists a metric graph \mathcal{G} where this alternative occurs.

6. Examples of graphs for the four cases

Case A1

Case B1

Case A2

Case B2

7. A minimization problem for sign-changing solutions

Given a function u, we let

$$u^+ := \max(u, 0), \qquad u^- := \min(u, 0)$$

and define the *nodal Nehari set* as

$$\mathcal{M}_{\lambda}(\mathcal{G}) := \left\{ u \in H^{1}(\mathcal{G}) \mid u^{\pm} \in \mathcal{N}_{\lambda}(\mathcal{G}) \right\}$$
$$= \left\{ u \in H^{1}(\mathcal{G}) \mid u^{\pm} \neq 0, J_{\lambda}'(u)u^{\pm} = 0 \right\}$$

The nodal Nehari set contains all nodal solutions of (NLS). We consider the minimization problem

$$\inf_{v \in \mathcal{M}_{\lambda}(\mathcal{G})} J_{\lambda}(v).$$

If this is a minimum, then all minimizers are nodal solutions of the problem, called *nodal ground states*.

8. A result about nodal zones

Theorem (De Coster, Dovetta, G., Serra, Troestler (see [2])) For every $k, m, n \in \mathbb{N}$ with $m \geq 2$, there exists a graph \mathcal{G} and a nodal ground state u on \mathcal{G} such that the set $u^{-1}(\{0\})$ is the union of k isolated points, m half-lines and n line segments.

References

[1] De Coster C., Dovetta S., Galant D., Serra E. *On the notion of ground state for nonlinear Schrödinger equations on metric graphs.* Calc. Var. 62, 159 (2023).

[2] De Coster C., Dovetta S., Galant D., Serra E., Troestler C., Constant sign and sign changing NLS ground states on noncompact metric graphs. ArXiV preprint: https://arxiv.org/abs/2306.12121.